
Theoret. chim. Acta (Berl.) 2, 411--415 (1964) 

Department of Chemistry, University of Alberta, Edmonton, Alta., Canada 
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An exact selLconsistent-field formalism, which obviates the need of evaluating inter- 
electronic repulsion integrals, is developed. This formulation claims general applicability and 
can lead either to Hartree-Fock functions or to the exact solutions of a non-relativistic Hamil- 
tonian, depending on the trial functions used. 

Es wird ein exakter ,,self-consistent-field"-FormMismus entwickelt, der die Berechnung 
yon Elektronenweehselwirkungsintegralen unnStig macht. Diese Formulierung beansprucht 
Mlgemeine Anwendbarkeit und kann, je nach Art der verwendeten Funktionen, entweder zu 
Hartree-Foek-Funktionen oder zu exakten LSsungen eines niehtrelativistischen Hamilton- 
operators fiihren. 

On a ddvelopp6 un formMisme exact de champ <(auto-cohgrent>>, off il n 'y en a pas besoin 
de calenler les intdgrales concernant la rgpulsion inter61ectronique. Ce formalisme est eomplgte- 
ment gdn6ral et il peut gtre employ6 pour d6terminer bien des fonctions de I-Iartree-Fock ou 
les fonetions propres d'un hamiltonien non-relativistique, ddpendant des caraet6ristiques des 
fonetions employ6es. 

Introduction 
I n  the  preceding papers  of  th is  series, hereaf te r  des ignated  as I and  I I ,  using 

a r e fo rmula ted  SCF scheme [1] a simple formula,  re la t ing the  one- and  two- 
e lect ron cont r ibu t ions  to  the  electronic energy,  was developed [2] for special sets 
of  o r thonormal  orbi ta ls ,  to  show an in teres t ing  re la t ion  to  the  T h o m a s - F e r m i  
approx ima t ion .  

T h a t  same re la t ion  is r e in t roduced  here in a general  way,  b y  means  of simple 
a lgebraic  concepts,  and  used as the  founda t ion  of  a simplif ied SCF scheme, i. e., 
s implif ied in the  sense t h a t  the  calculat ions  are simple,  as no in tere lee t ronie  
repuls ion integrals  have  to  be evalua ted .  Otherwise the  m e t h o d  claims general  
app l i cab i l i ty  and  can be used to  determine ,  in bo th  a pr ior i  and  a poster ior i  
calculat ions,  exac t  t I a r t r e e - F o e k  funct ions  and  the  exac t  solut ions of the  non- 
re la t iv is t ic  t t a m i l t o n i a n  used, depend ing  on the  t r ia l  functions.  

Mathematical Formulation 
The electronic energy of  a n y  sys tem,  corresponding to  a normal ized  wave 

func t ion  }[/, is given b y  

E =  

where 5/~ is the  non-re la t iv is t ic ,  t ime-  and  sp in- independent  H a m i l t o n i a n  for the  
sys tem under  considerat ion.  The  t e rms  of th is  I -Iamil tonian can be grouped  in two 

* This work has been supported in part by the National Research Council of Canada. 
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classes: the first one includes the kinetic energy and the nuclear attraction terms, 

while the second includes the interelectronie repulsion terms. 
The same kind of grouping could then be applied to the energy expression, 

which could be written as 

E = H + I ,  

but because it has been customary to write the energy expression as* 

E = 2 H §  (1) 

this last expression will be adopted in this paper : H then represents one half of 
the kinetic energy and nuclear attraction contribution to the total  electronic 
energy of the system under consideration, while I constitutes the total  interelec- 
tronic contribution. 

I t  was seen in I I  that  special sets of orthonormal orbitals satisfy the condition 

H + 2 I = 0  , 

and tha t  exact SCF functions of neutral systems and negative ions almost satisfy 
it. 

The above condition can be generalized by  introduction of an arbitrary para- 
meter g, such tha t  the condition 

H §  2 g l =  0 (2) 

will now be satisfied by any function (in particular, the Hartree-Fock function 
and the exact wave function) for the system under consideration, with each func- 
tion characterized by  a different value of g. 

The energy expression can then be written as 

E - -  4 g - t  H , (3) 
2g 

and if the virial theorem is satisfied by  the wave functions under consideration, 
one can also write** 

i V -  8 g - 1  H .  (4) 
2g 

Equations (3) and (4) will only be simultaneously satisfied by  the same value 
g if the vMal theorem is satisfied; tha t  is, when the wave function used is, e. g., 
the t tar tree-Fock function or the ieigenfunction of the tIamil tonian under con- 
sideration. 

The parameter  g offers certain special characteristics, l~irst of all, taking into 
account tha t  H < 0 and I >  0, g must  be positive, in order tha t  Eq. (2) will be 
satisfied. But  for tha t  same reason one can see from Eq. (1) that  2 H < E < 0, 
and coupling this condition with Eq. (3) it can be concluded that  g > 1/4. For all 
the systems investigated** it has been seen that  the value of g is actually very 
close to I (except for positive ions). 

Furthermore, the dependence of g on the wave function presents a monotonous 
behavior. When the value of g is calculated from Eq. (3) for different wave fune- 

* This is the expression already used in II. 
** For more details see II. 
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tions, it can be seen tha t  the series of  values tends monotonical ly  towards  the 
value corresponding to the wave function which simultaneously satisfies the virial 
theorem. The table presents the values of  g for different SCF functions for the 
ground state of He, determined by  t IvzI~AOa [3] using from I to t0  Gaussian 
functions in the expansion of the Is orbital. The value corresponding to the 
Har t ree-Fock  function is included for comparison. 

On the basis of all these considerations it has been decided tha t  Eqs. (3) and (4) 
can const i tute the foundat ion of a new SCF scheme which obviates the need of  
evaluat ing interelectronie repulsion integrals, and in which the parameter  g can 
be used as a criterion of 
convergence. 

I t  is t rue tha t  the virial 
theorem could be usecl alone 
in an a posteriori (that is, 
when the energy is known) 
calculation. Bu t  in such 
ease it could not  be claimed 
with cer ta inty  tha t  the 
wave function obtained in 
such way, t ha t  is, a wave 
function with the only cha- 
racteristic of  giving a cer- 
tain value for the total  
kinetic energy, is the Har-  
t ree-Fock function or the 
exact  eigenfunetion. 

The present formula- 

Table. Values o/the parameter g /or different SCF/unctions* 
/or the ground state o/He (using Gaussian /unctions) 

Number of Gaussian 
functions Energy g 

4 
5 
6 
8 

10 
Hartree-Foek 

-2.30099 
-2.74707 
-2.83568 
-2.85516 
-2.85989 
-2.86112 
-2.86161 
-2.86166 
-2.86168 

0.8321 
0.9172 
0.9393 
0.9451 
0.9468 
0.9474 
0.9474 
0.9474 
0.9474 

* Determined by Profi S. HUZlNXGA (IBM Research 
Laboratory, San Jose, California, U. S. A.). The author 
is indebted to Prof. HuzINAa~ for letting him use his 
results before publication. 

tion, using Eqs. (3) and (4), can, on the other hand, lead to functions with the  
proper distribution, because the nuclear a t t ract ion terms are included. Further-  
more the calculations can be carried out  within the frame of  a self-consistent 
scheme and the method can be used in a priori eMculations. 

SCF Formulat ion 

The general formalism will be presented first and later its application to the 
determinat ion of both Har t ree -Fock  functions and exact  eigenfunctions in a 
priori and in a posteriori calculations will be discussed. 

I n  order to  simplify the following discussion the following conventions will be 
made : 

E - energy value, either known or est imated;  

gn -- value of  the parameter  g, used in the n- th  i teration; 

H n  -- value of  H, calculated from Eq. (3), once E and gn are known;  

H/~ - one half  of  the expectat ion value of the one-electron terms (kinetic 
energy and nuclear at traction) of the Hamil tonian,  calculated with the wave 
funct ion used in the n- th  i teration; 
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N/n - -  expectation value of the nuclear attraction terms of the Hamiltonian, 
calculated with the wave function used in the n-th iteration, plus the nuclear 
repulsion energy if it exists for the system under consideration; 

t I ! 
g~ - value of the parameter  g, calculated from Eq. (4), once H'~ and N'. are 

known. 

General Formalism 
The energy value is chosen and a proper trial function is selected. 
A test value go is chosen (e. g., go = I for neutral systems and negative ions) 

and the value H 0 calculated. The trial function is properly varied until the eva- 
luated value H0 approximates H0 within the desired accuracy. Using the values 
Hg and No in Eq. (4), the new value go is evaluated. I f  go approximates go within 
the desired accuracy, the process is finished and a self-consistent function, which 
satisfies the virial theorem, has been obtained. I f  not, a new value gl is chosen 
and used in repetition of the process. 

Though not explicitly stated, it is clear tha t  the evaluation of a value H'~ 
which approximates Hn within a certain accuracy involves also an iteration 
process. 

I. D e t e r m i n a t i o n  of H a r t r e e - F o c k  F u n c t i o n s  

a) A posteriori calculations. The Hartree-Fock energy is known. The general 
formalism is applied as indicated above. The wave function obtained will be a 
Hartree-Fock function within the precision chosen. 

b) A priori calculations. I t  is necessary to distinguish two cases, depending 
on whether or not the exact energy is known. 

I f  the exact energy is known the general process is repeated for different energy 
values, lying in a region above the exact value, until for one of them the desired 
self-consistency will be reached. This energy value can only be the Hartree-Fock 
energy if the trial function was so chosen tha t  it could develop into the Itartree- 
Fock function by  proper variation of the parameters. 

I f  the exact energy is not known an estimate must  be made and the process 
used when the exact energy was known repeated for energy values in a certain 
region around the originally estimated value. 

2. D e t e r m i n a t i o n  o f  E x a c t  E i g e n f u n c t i o n s  

a) A posteriori calculations. The exact energy is known. The general formal- 
ism is apphed as indicated above. The wave function obtained will be the exact 
eigenfunction ff the trial function was properly chosen. 

b) A priori calculations. The exact energy is not known. An estimate is made 
and the general process is repeated for different values in the neighborhood of 
tha t  value. The energy value for which self-consistency is obtained will be the 
exact eigenvalue. 

Simplified Calculation el Close-to-Hartree-Foek Functions 
In  these calculations, for which an estimate of the energy must be available, 

a single value of g, equal to 1, is used. 
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The value of this method  lies on the fact t ha t  the exact  energies are known for 
m a n y  systems. The error commit ted  when taking this energy instead of the 
Har t ree-Fock energy (which is not  known) can be expected to be cancelled or at  
least partially compensated by  the error commit ted  when taking the value 1 for g 
instead of the proper value, which in general is lower. 

References 
[1] ~'~AGA, S. : Theorem. chim. Ac~a (Berl.) 2, 403 (1964). 
[2] - Theorem. chim. Acta (Berl.) 2, 406 (1964). 
[3] I{VZI~AG~, S. : Unpublished results. 

(Received September 2, 1966) 


